AFRICAN ECONOMIC RESEARCH CONSORTIUM
Collaborative PhD Programme in Economics for Sub-Saharan Africa
COMPREHENSIVE EXAMINATIONS IN CORE AND ELECTIVE FIELDS
FEBRUARY 19 - MARCH 10, 2021
MICROECONOMICS

Time: 08:00-11:00 GMT
Date: Wednesday, February 24, 2021

INSTRUCTIONS:

Answer a total of FOUR questions: ONE question from Section A, ONE question from Section B, and TWO questions from Section C. Please note that Question 5 in Section C is compulsory.

The sections are weighted as indicated on the paper.

SECTION A: (15\%)

Answer only ONE Question from this Section

Question 1

(a) Explain the difference between income and substitution effects. Illustrate them using an example of two goods and a price increase of good 1 , where the quantity of good 1 is on the vertical axis and the quantity of good 2 on the horizontal axis.
[10 Marks]
(b) Illustrate whether the Giffen good paradox implies an inferior good.
[5 Marks]

Question 2

(a) What is an externality? (In your answer be sure to consider both positive and negative externalities and their associated economic problems).
[7 Marks]
(b) What is public good? State two criteria that must be fulfilled for a good to be public good.
[8 Marks]

SECTION B: (25\%)

Answer only ONE Question from this Section

Question 3

(a) Derive the profit function $\pi(P)$ and the supply function (or correspondence) for the single output technology whose production function is $f(z)=\sqrt{\left(z_{1}+z_{2}\right)}$
[12 Marks]
(b) Derive the cost function $c(w, q)$ and conditional factor demand functions (or correspondences) for the single output constant returns technology.
$f(z)=\left(Z_{1}^{\rho}+Z_{2}^{\rho}\right)^{\frac{1}{\rho}}, \rho \leq 1$
[13 Marks]

Question 4

Consider a Cournot duopoly with the standard linear demand curve $P=a-b Q$ where Q is a market supply P is market price and a and b are the standard intercept and slope coefficients. Let c be the marginal cost of production and let fixed costs be zero.
(a) Obtain the Cournot (Nash) equilibrium quantities for each firm, profits and the market price.
[6 Marks]
(b) Now assume that the two firms decide to collude. Obtain the equilibrium quantities price and profits, and compare them to your answers in (a) above.
[6 Marks]
(c) Is the equilibrium in (b) a Nash Equilibrium? Why or why not? Demonstrate.
[6 Marks]
(d) Suppose the market (Cournot) game above is played sequentially, with firm 1 as the leader. Assume that firm 2 observes firm 1's move. Obtain the optimal outputs and profits for the two firms. Compare your findings to (a) above and comment.
[7 Marks]

SECTION C: (60\%)

Answer TWO Questions from this Section,

One of which MUST be Question 5, which is COMPULSORY.

Question 5 (Compulsory)

Briefly define the underlined concepts in any 4 of the following statements and then explain whether the statements you have chosen are true or false.
(a) Every Walrasian Equilibrium allocation is Pareto efficient.
(b) In contrast to a separating equilibrium, in a pooling equilibrium, insurance companies can distinguish high risk customers from low risk customers.
[7.5 Marks]
(c) The equilibrium price and quantity for a market with the following demand and supply functions, $\mathrm{D}(\mathrm{p})=20-2 \mathrm{p}$ and $\mathrm{S}(\mathrm{p})=40-6 \mathrm{p}$ respectively are 3 and 10 .
[7.5 Marks]
(d) Any constant sum game can be transformed into a zero sum game.
(e) Preferences defined by $\left(x_{1}, x_{2}\right) \succ\left(y_{1}, y_{2}\right)$ if $x_{1}+x_{2}<y_{1}+y_{2}$ exhibit local non satiation and the consumer facing positive prices will spend all income on non negative quantities of these goods.
[7.5 Marks]
(f) The following Bernoulli utility function $u(x)=\sqrt{x}$ exhibits decreasing absolute risk aversion.
[7.5 Marks]

Question 6

(a) Formally define "feasible allocation" for K goods in n-consumer exchange economy. Define the notion of "blocking coalition" in this economy. Define the "core" and briefly explain how this concept relates to competitive equilibrium.
[15 Marks]
(b) Let consumer A and B have utility functions:
$u_{A}\left(x_{1}^{A}, x_{2}^{A}\right)=\left(x_{1}^{A}\right)^{a}\left(x_{2}^{A}\right)^{1-a}$ and $u_{B}\left(x_{1}^{B}, x_{2}^{B}\right)=\left(x_{1}^{B}\right)^{b}\left(x_{2}^{B}\right)^{1-b}$ for consumption of good 1 and 2. Each agent has an endowment $e_{A}=(1,0)$ and $e_{B}=(0,1)$. The prices of the goods are given by $p=\left(p_{1}, p_{2}\right)$
(i) Compute the aggregate demand functions associated with such consumptions.
[7.5 Marks]
(ii) Determine the general equilibrium and market clearing conditions for the markets of good 1 and good 2.

Question 7

Mensah, a famous hunter, has to choose one of two routes a and d (listed in order of speed in good conditions) to walk down a mountain. Fast routes are more likely to be struck by a rockfall. At the same time, Kofi, a notorious rival hunter has to choose whether to use (y) or not use (x) a valuable explosive device to cause a rock-fall. The game is represented in normal form below:

		Kofi	
		$x(\beta)$	$y(1-\beta)$
Mensah	$a(\alpha)$	12,0	0,6
	$d(1-\alpha)$	9,3	6,0

(a) State the fundamental theorem of mixed strategy Nash equilibrium.
(b) Find the mixed strategy Nash Equilibrium (NE) of this game. Assume that Mensah plays a with probability α and Kofi plays x with probability β as represented in the game table above.
[5 Marks]
(c) Now assume that Mensah has four possible routes from which he can choose. Determine Mensah's pure strategy best responses when $\beta=2 / 3$, when $\beta<2 / 3$, and when $\beta>2 / 3$, by calculating Mensah's expected payoffs from his pure strategies for the different values of β. The normal form for this game is presented below.
[12 Marks]

		Kofi	
$x(\beta)$		$y(1-\beta)$	
Mensah	a	12,0	0,6
	b	11,1	1,5
	c	10,2	4,2
	d	9,3	6,0

(d) If you were hired by Mensah to analyse this strategic interaction, which route (i.e., strategy) would you suggest that Mensah should never choose?
[2 Marks]
(e) Finally, find a mixed strategy NE of the new game (i.e., the one where Mensah has 4 strategies) in which one player adopts a pure strategy s_{i} and the other player adopts a mixed strategy σ_{j}. Then find another mixed strategy NE in which the same pure strategy s_{i} is assigned zero probability.

Question 8

(a) Briefly explain and give economic application of the following concepts of information economics.
(i) Signaling
[4 Marks]
(ii) Adverse selection
[3 Marks]
(iii) Moral hazard
[3 Marks]
(b) Consider a job market signalling model in which firms intend to hire workers whose productivity is unobservable. There are two types of workers, some with high productivity $\left(\theta=\theta_{H}\right)$ and others with low productivity $\left(\theta=\theta_{L}\right)$, where $\theta \in[\underline{\theta}, \bar{\theta}]$. The firms believe that the level of education, e, of a worker is a good signal for the unobservable productivity and the probability of hiring a high productivity worker type θ_{H} is $\mu(e)$ [i.e. $\operatorname{Prob}\left(\theta=\theta_{H}\right.$ $\mid e)=\mu(e)]$. The cost of education level e for worker type θ is $c(e, \theta)$, where $c(0, \theta)=0$, $c_{e}(e, \theta)>0, \quad c_{e e}(e, \theta) \geq 0, c_{\theta}(e, \theta)<0$ and $c_{\mathrm{e}} \theta(e, \theta)<0$. Education is assumed to be just a signal which does not to enhance productivity. If the firm offers a wage $w=\theta \geq r(\theta)$ then the iso-utility level, u_{0}, for the worker is given by $w-c(e, \theta)=u_{0}$.
(i) Explain why the worker's preference over the education and wage level pairs (e, w) is upward sloping in the $w-e$ space (w on the horizontal axis and e on the vertical axis).
[5 Marks]
(ii) Explain and show using a fully labelled diagram in the $w-e$ space why the utility function satisfies the single crossing property.
[5 Marks]
(iii) What are the implications of the single crossing property on the effect of the education signal on the equilibrium wage rate that the firms can offer to workers?
[5 Marks]
(iv) Describe, in terms of the number of workers employed and the wages paid by the firms, the equilibrium that will exist if productivity is observable and the reservation utility of workers $r(\cdot)$ which is strictly increasing in θ and $r(\theta) \leq \theta$ for all θ.
[5 Marks]

